Experimental Design for Simulation

Russell R. Barton, Penn State
W. David Kelton, University of Cincinnati

Introductory Tutorials Track
2003 Winter Simulation Conference
New Orleans
Abstract

• You have some simulation models – how should you use, experiment with them?
• Introduce ideas, issues, challenges solutions, opportunities
• Careful up-front planning of experiments saves time, effort in the end
 – And gets you better, more results
 – Efficient estimates of effects of inputs on outputs
• Discuss traditional experimental design in simulation context, and broader issues of planning simulation experiments
Introduction

• Real meat of simulation project – running model(s), understanding results
• Need to plan ahead before doing runs
 – Just trying different models, model configurations haphazardly is inefficient way to learn
 – Careful planning of runs
 • Improves efficiency
 – Both computational and statistical
 » Really just two sides of the same coin
 • Suggests further experimentation
Introduction (cont’d.)

- *Experimental design* traditionally refers to physical experiments
 - Origins in agriculture, laboratory experiments
- Can recycle most such traditional methods into simulation experiments
 - Will discuss some of this
- Also discuss different situation in simulation, both broader and more specific
 - Overall purpose, what the outputs are, random-number use, effects of input changes on output, optimum-seeking
Example questions in simulation experiment

- What model configurations, versions to run?
 - What are the input factors?
 - How should they be varied?
 - Use the same or different random numbers across configurations?
- Run length?
- Number of runs?
- Interpretation, analysis of output?
- How to make runs most efficiently?
Introduction (cont’d.)

• Purpose here is to call attention to issues, and how to deal with them
 – Not a lot of technical details
• See WSC Proceedings paper for this talk for many references to books, papers with complete “do-it-yourself” operational details
Purpose of the Project?

• Maybe obvious, but be clear, specific about ultimate purpose of project
 – Answer can point different ways for design
 – Failure to ask/answer will leave you adrift – unlikely that you’ll reach solid conclusions, recommendations

• Even if there’s just one model in one configuration, or a very few fixed cases
 – Still questions on run length, number of runs, random-number allocation, output analysis
Purpose of the Project? (cont’d.)

• But if there’s more general interest in how changes in inputs affect outputs
 – Clearly, questions on which configurations to run
 – Plus all the single/few scenario questions above
 – Especially in optimum-seeking, need to take care in deciding which configurations to try, ignore

• Goals, strategies often evolve or become more ambitious (or less ...) during project
 – In designed experiments, can use results from early experiments to help choose later ones
Types of Goals

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Early</td>
<td>Validation</td>
</tr>
<tr>
<td>2. Next</td>
<td>Screening</td>
</tr>
<tr>
<td>3. Middle</td>
<td>Sensitivity Analysis, Understanding</td>
</tr>
<tr>
<td>4. Middle</td>
<td>Predictive Models</td>
</tr>
<tr>
<td>5. Later</td>
<td>Optimization, Robust Design</td>
</tr>
</tbody>
</table>
Output Performance Measures?

• Think ahead about what you want out of your simulations

• Most simulation software produces lots of default output
 – Time-based measures, counts
 – Economic-based measures (cost, value added)
 – You can specify or create more
 – Often get averages, minima, maxima

• Easier to ignore things you have than to get things you don’t have (to state the obvious ...)
 – But extraneous output can significantly slow runs
Output Performance Measures? (cont’d.)

• One fundamental question for output measures – time frame of simulation/system
 – *Terminating* (a.k.a. *transient*, *short-run*, *finite-horizon*)
 • There’s a natural way to start and stop a run
 • Start/stop rules set by system and model, not by you
 • Need to get these right – part of building a valid model
 – *Steady-state* (a.k.a. *long-run*, *infinite-horizon*)
 • Outputs defined as a limit as simulation run length $\to \infty$
 • No natural way to start – system has already been running forever
 • In theory, never stop run – but you must decide how to
• Regardless of time frame, need to decide what aspects of output you want
 – In stochastic simulation, outputs are observations from (unknown) probability distributions
 • Ideally, estimate the whole distribution – ambitious goal
 – Usually get summary measures of output distributions
 • Means (maybe too much focus on these)
 • Extrema
 • Variance, standard deviation
 • Quantiles of output distribution
 – Output desired can affect model, data structure
How to Use Random Numbers?

• Most simulation models are *stochastic*
 – Random inputs from probability distributions

• Simulation software has ways to *generate* observations from input distributions
 – Rely on *random-number generator*
 • Algorithm to produce a sequence of values that appear independent, uniformly distributed on \([0, 1]\)
 – RNGs are actually fixed, recursive formulae generating the same sequence
 – Will eventually *cycle*, and repeat same sequence
How to Use Random Numbers? (cont'd.)

• Obviously, want “good” RNG
 – LONG cycle length
 • An issue with old RNGs on new machines ...
 – Good statistical properties
 – Broken into streams, substreams within streams
 – RNG design is complicated, delicate
• With a good RNG, can ignore randomization of treatments (model configurations) to cases (runs) – a concern in physical experiments
How to Use Random Numbers? (cont’d.)

• RNG is controllable, so randomness in simulation experiment is controllable – useful?
 – Controlling carefully is one way to reduce variance of output, without simulating more
• Part of designing simulation experiments is to decide how to allocate random numbers
 – First thought – independent (no reuse) throughout
 • Certainly valid and simple statistically
 • But gives up variance-reduction possibility
 • Usually takes active intervention in simulation software
 – New run always starts with same random numbers – override
How to Use Random Numbers? (cont’d.)

• Better idea when comparing configurations
 – Re-use random numbers across configurations – *common random numbers*
 – Differences in output more likely due to differences in configurations, not because the random numbers bounced differently (they didn’t)
 – Probabilistic rationale:
 \[\text{Var} (A - B) = \text{Var}(A) + \text{Var}(B) - 2 \text{Cov}(A, B) \]
 – Hopefully, \(\text{Cov}(A, B) > 0 \) under CRN
 • Usually true, though (pathological) exceptions exist
 – Must *synchronize* RN use across configurations
 • Use same RNs *for same purposes*
 • Use of RNG streams, substreams helpful
Separate ‘arrival’ and ‘service’ streams
Sensitivity of Outputs to Inputs?

• Simulation models involve *input factors*
 – Quantitative – arrival rate, number of servers, pass/fail probabilities, job-type percentages, ...
 – Qualitative – queue discipline, topology of part flow, shape of process-time distribution, ...

• *Controllable* vs. *uncontrollable* input factors
 – In **real** system, usually have both
 • Number of servers, queue discipline – controllable
 • Arrival rate, process-time-distribution – uncontrollable
 – In **simulation**, **everything** is controllable
 • Facilitates easy “what-if” experimentation
 • Advantage of simulation vs. real-world experimentation
Sensitivity of Outputs to Inputs? (cont’d.)

- Input factors presumably have some effect on output – what kind of effect?
 - Sign, magnitude, significance, linearity, ...
- Mathematical model of a simulation model:
 \[
 \begin{align*}
 \text{Output}_1 &= f_1(\text{Input}_1, \text{Input}_2, \ldots) \\
 \text{Output}_2 &= f_2(\text{Input}_1, \text{Input}_2, \ldots) \\
 &\vdots \\
 \end{align*}
 \]
 \(f_1, f_2, \ldots\) represent simulation model itself

- Common goal – estimate change in an output given a change in an input
 - Partial derivative
 - But we don’t know \(f_1, f_2, \ldots\) (why we’re simulating)
 - Now discuss different estimation strategies
Classical Experimental Design

• Has been around for ~80 years
 – Roots in agricultural experiments
• Terminology
 – Inputs = Factors
 – Outputs = Responses
• Estimate how changes in factors affect responses
• Can be used in simulation as well as physical experiments
 – In simulation, have some extra opportunities
Two-level factorial designs
- Each input factor has two levels ("-", "+") levels
- No general prescription for setting numerical levels
 - Should be “opposite” but not extreme or unrealistic
- If there are k input factors, get 2^k different combinations of them ... 2^k factorial design
- Run simulation at each combination
 - Replicate it? Replicate whole design?
- Get responses $R_1, R_2, \ldots, R_{2^k}$
- Use to learn about effects of input factors
Classical Experimental Design (cont’d.)

• Design matrix for \(k = 3 \) (with responses):

<table>
<thead>
<tr>
<th>Run ((i))</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>(R_1)</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>(R_2)</td>
</tr>
<tr>
<td>3</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>(R_3)</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>(R_4)</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>(R_5)</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>(R_6)</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>(R_7)</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(R_8)</td>
</tr>
</tbody>
</table>

• **Main effect** of a factor: average change in response when factor moves from “–” to “+”
 – Main effect of factor 2:
 \((- R_1 - R_2 + R_3 + R_4 - R_5 - R_6 + R_7 + R_8)/4\)
Classical Experimental Design (cont’d.)

• Two-way interaction: does the effect of one factor depend on the level of another?
 – “Multiply” sign columns of the two factors, apply to response column, add, divide by 2^{k-1}
 – Interaction between factors 1 and 3:
 $$(+R_1 - R_2 + R_3 - R_4 - R_5 + R_6 - R_7 + R_8)/4$$
 – If an interaction is present, cannot interpret main effects of involved factors in isolation
Classical Experimental Design (cont’d.)

• Example: car maintenance/repair shop
 – Outputs:
 • Daily profit
 • Daily Late Wait Jobs = Cars/day that are “late” for customers waiting
 – Inputs:
 • Max Load = max hours/day that can be booked
 • Max Wait = max number of customer-waiting cars/day that can be booked
 • Wait allowance = hours padded to predicted time in system for waiting customers
Classical Experimental Design (cont’d.)

- 2^3 factorial design
 - 100 replications per design point
 - Used Arena Process Analyzer to manage runs:
 - Main effects on Daily Profit: +157, −4, 0
 • Implication: should set Max Load to its “+” value
 • Other two factors don’t matter
 - Interactions on Daily Profit: −5 (1x2), others 0

<table>
<thead>
<tr>
<th>Scenario Properties</th>
<th>Controls</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Program File</td>
<td>Reps</td>
</tr>
<tr>
<td>Base Case</td>
<td>1 : Model 06-04.p</td>
<td>100</td>
</tr>
<tr>
<td>- - -</td>
<td>1 : Model 06-04.p</td>
<td>100</td>
</tr>
<tr>
<td>+ - -</td>
<td>1 : Model 06-04.p</td>
<td>100</td>
</tr>
<tr>
<td>- + -</td>
<td>1 : Model 06-04.p</td>
<td>100</td>
</tr>
<tr>
<td>+ + -</td>
<td>1 : Model 06-04.p</td>
<td>100</td>
</tr>
<tr>
<td>- - +</td>
<td>1 : Model 06-04.p</td>
<td>100</td>
</tr>
<tr>
<td>+ - +</td>
<td>1 : Model 06-04.p</td>
<td>100</td>
</tr>
<tr>
<td>- + +</td>
<td>1 : Model 06-04.p</td>
<td>100</td>
</tr>
<tr>
<td>+ + +</td>
<td>1 : Model 06-04.p</td>
<td>100</td>
</tr>
</tbody>
</table>

Link to spreadsheet
• Other limitations of 2^k factorial designs:
 – Implicitly assumes a particular underlying regression model
 • Linear in main effects, product-form interactions
 • Can generalize to more complex designs
 – What if k is large (coming soon ...)?
 – Responses are random variables, so what about statistical significance of effects estimates?
 • Can replicate whole design, say, n times
 • Get n i.i.d. estimates of effects
 • Form confidence intervals, tests for expected effects
 – If confidence interval misses 0, effect is statistically significant
Which Inputs Are Important?

• With many factors, probably just a few are important ... *screen out* the others
 – Could theoretically do via main effects in 2^k factorial designs, but, we have:

• *Barton’s theorem:*

 If k is big, then 2^k is *REALLY* big
 – Too many factor combinations (and runs)

• Remedies:
 – Fractional factorial designs – run just a fraction (1/2, 1/4, 1/8, etc.) of the full 2^k
 – Specialized factor-screening designs

• Drop some (most?) factors, focus on the rest
Response Surfaces

- Most experimental designs are based on an algebraic regression model
 - Output = dependent (Y) variable
 - Inputs = independent (x) variables
 - For example, with $k = 2$ inputs, full quadratic form:
 \[Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \varepsilon \]
- A regression model of the simulation model – a metamodel
 - In $k = 2$ example, also called a response surface
Response Surfaces (cont’d.)

- Estimate the model (β coefficients) by making runs, do a regression of Y on x’s
 - Which runs to make? Many methods in literature
- Uses of response surfaces in simulation
 - Literally take partial derivatives to estimate effects
 - Any interactions would be naturally represented
 - Proxy for the simulation
 - Explore a wide range of inputs quickly, then simulate intensively in regions of interest
 - Optimize response surface as approximation for model
- Limitations, cautions
 - Regression-model form
 - Variation in response-surface estimates
Optimum Seeking

• May have one output performance measure that’s by far the most important
 – Bigger is better – throughput, profit
 – Smaller is better – queueing delays, cost
• Look for a combination of input factors that optimizes (maximizes or minimizes) this
• Like a math-programming formulation
 – Max or min output response over inputs
 – Subject to constraints on inputs, requirements on other outputs
 – Search through the input-factor space
Optimum Seeking (cont’d.)

• Example: car maintenance/repair shop

Maximize \(\text{Daily Profit} \)
Subject to
\[
\begin{align*}
20 & \leq \text{Max Load} \leq 40 \\
1 & \leq \text{Max Wait} \leq 7 \\
0.5 & \leq \text{Wait Allowance} \leq 2.0 \\
\text{Daily Late Wait Jobs} & < 0.75
\end{align*}
\]

- Objective function is the simulation model
- Constraints on the input control (decision) variables
- An output requirement, not an input constraint

Could also have constraints on linear combinations of input control variables (but we don’t in this problem)
Optimum Seeking (cont’d.)

• This is a difficult problem
 – Many input factors – high-dimensional search space
 – Cannot “see” objective function clearly – it’s an output from a stochastic simulation
 – May be time-consuming to “evaluate” the objective function – have to run the whole simulation each time

• So, cannot absolutely guarantee to “optimize your simulation”

• Still, it may well be worth trying to get close
Optimum Seeking (cont’d.)

• Heuristic search methods (TABU, Genetic, Pattern) can “move” the model from one input-factor point to another, use response data to decide on future moves

• Several have been linked to simulation-modeling software:

 Your simulation model \[\rightarrow\] Input factors \[\rightarrow\] Heuristic-search package

 \[\leftarrow\] Output response

• User must also specify starting point, stopping conditions (can be problematic)
Optimum Seeking (cont’d.)

- Example: car maintenance/repair shop
- OptQuest optimum-seeker with Arena modeling software
- Ran for 20 minutes
Conclusions

• Designing simulation experiments deserves your attention
 – Capitalize on your (substantial) modeling effort
 – Unplanned, hit-or-miss course of experiments unlikely to yield much solid insight

• There are several formal experimental-design procedures that are quite amenable to simulation experiments
 – Simulation experiments present unique opportunities not present in physical experiments

• Uses computer time – cheaper than your time